ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration	ASSA ABLOY
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-ASA-20160046-IBA1-EN
Issue date	07.03.2016
Valid to	06.03.2021

Panic exit device – OneSystem Panic Bar Type B ASSA ABLOY

www.bau-umwelt.com / https://epd-online.com

1. General Information

ASSA ABLOY	OneSystem Panic Bar Type B					
Programme holder IBU - Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Owner of the Declaration ASSA ABLOY Sicherheitstechnik GmbH Bildstockstraße 20 72458 Albstadt, Germany					
Declaration number EPD-ASA-20160046-IBA1-EN	Declared product / Declared unit The declaration represents 1 panic exit device – OneSystem Panic Bar Type B consisting of the following items: Panic Bar Gearbox and tube with a length of 980 mm					
This Declaration is based on the Product Category Rules: Locks and fittings , 07.2014 (PCR tested and approved by the independent expert committee (SVR)) Issue date 07.03.2016 Valid to 06.03.2021	Scope: This declaration and its LCA study are relevant to Panic Bar Type B. The primary manufacturing processes are made by external suppliers and the final manufacturing processes and assembly occur at our manufacturing facility in Albstadt, Germany. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data					
Prof. DrIng. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)	Verification The CEN Standard EN 15804 serves as the core PCR Independent verification of the declaration according to ISO 14025 internally x externally					
DrIpg Burkhar Lettikalli Challen	Dr. Wolfram Trinius					

2. Product

2.1 Product description Product name: Panic Bar Type B

Product characteristic: Panic exit device

- For fire and smoke protection doors and emergency exits, as metal frame or wooden and steel door versions Slim-fit design
- Flat overlap, thus ideal for metal frame doors
- Retrofitting over existing oval rosette drill holes possible
- Compatible with all OneSystem panic locks

2.2 Application

Panic Bar Type B areideal for a wide range of applications. Designed to equip:

- Emergency exit doors
- Frequently used communicating doors
- Types of doors
- Use for metal, aluminium or PVC framed doors with a narrow stile or wide stile

- Single or double leaf doors (separate or with rebated edge)
- Designed for all types of public, particularly children, the elderly and the disabled.

2.3 Technical Data

The declared panic exit device has following technical specifications:

Technical data

Item	Value
Maximum release time for the door	1s
Category of the overhang	100mm
Maximum release force – with door not under pressure	80 N
Maximum release force – with	200 N with 1000 N
door under pressure	press-on force
Maximum door weight	300 kg

2.4 Placing on the market / Application rules For the placing on the market in the EU/EFTA (with the

exception of Switzerland) the Regulation (EU) No 305/2011 applies. The products need a Declaration of Conformity taking into consideration /EN 1125:2008

Building hardware — Panic exit devices operated by a horizontal bar, for use on escape routes — Requirements and test methods/ and the CE- marking.

For the application and use the respective national provisions apply.

2.5 Delivery status

The Panic Bar B is delivered as in a box size - 1880 x 120 x 100mm.

2.6 Base materials / Ancillary materials

The average composition for Panic Bar Type B is as following:

Component	Percentage in mass (%)
Brass	0.11
Plastics	1.25
Stainless Steel	82.48
Steel	2.91
Zinc	13.25
Total	100.0

2.7 Manufacture

The primary manufacturing processes are made by external suppliers in factory Zhoungshan, China and Stuttgart, Germany. The components come from processes like stamped steel, turning, injection molding, zinc and steel casting. Final assembly and testing takes place in our manufacturing facility in Albstadt, Germany.

The factory of Albstadt and these of the suppliers have a certified Quality Management system in accordance with /ISO 9001:2008/.

2.8 Environment and health during manufacturing

ASSA ABLOY is committed to producing and distributing door opening solutions with minimal environmental impact, where health & safety is the primary focus for all employees and associates. • Environmental operations, GHG, energy, water, waste, VOC, surface treatment and H&S are being routinely monitored. Inspections, audits, and reviews are conducted periodically to ensure that applicable standards are met and Environment Management program effectiveness is evaluated.

• Code of Conduct covers human rights, labor practices and decent work. Management of ASSA ABLOY is aware of their environmental roles and responsibilities, providing appropriate training, supporting accountability and recognizing outstanding performance.

• The factory of Albstadt has certification of Environmental Management to /ISO 14001:2004/ and Occupational Health and Safety to /OHSAS 18001:2007/.

• Any waste metals during machining are separated and recycled. The waste from the water-based painting process is delivered to waste treatment plant.

2.9 Product processing/Installation

Panic Bar Type B electronic panic exit devices are distributed through and installed by trained installation technicians, such as locksmiths, carpenters etc. adhering to local/national standards and requirements.

2.10 Packaging

Panic Bar Type B panic exit devices are packed in a cardboard box with corrugated carton inlays. Panic Bar Type B Tube has package with dimensions of $1880 \times 120 \times 100$ mm.

Material	Value (%)
Cardboard/paper	98.0
Plastics	2.0
Total	100.0

2.11 Condition of use

To maintain low friction and secure latching, annual maintenance <1g of grease on contact surfaces is recommended.

2.12 Environment and health during use

There is no harmful emissive potential. No damage to health or impairment is expected under normal use corresponding to the intended use of the product.

2.13 Reference service life

Approved for 1.000.000 cycles under normal working conditions, 12 years depending on cycle frequency.

2.14 Extraordinary effects

Fire Suitable for use in fire and smoke doors (/EN 14846/).

Water

Contain no substances that have any impact on water in case of flood.

Mechanical destruction

No danger to the environment can be anticipated during mechanical destruction.

2.15 Re-use stage

The product is possible to re-use during the reference service life and be moved from one door to another.

2.16 Disposal

The majority, of components are stainless steel, steel and brass, which can be recycled. The Panic Bar Type B can be mechanically dissembled to separate the different materials. 99% of the materials used are recyclable. The plastic components can be used for energy recovery in an incineration plant.

2.17 Further information

ASSA ABLOY Sicherheitstechnik GmbH Bildstockstraße 20 72458 Albstadt , GERMANY Tel. +49 7431 123-0 www.assaabloy.de

3. LCA: Calculation rules

3.1 Declared Unit

The declaration refers to the functional unit of 1 piece of Panic Bar Type B panic device as specified in Part B requirements on the EPD for PCR Locks and fittings: (mechanical & electromechanical locks & fittings).

Declared unit

Name	Value	Unit
Declared unit	10.87 kg	one piece of mechanical panic exit device
Conversion factor to 1 kg	0.0920	-

3.2 System boundary

Type of the EPD: cradle to gate - with options The following life cycle stages were considered:

Production stage:

- A1 Raw material extraction and processing
- A2 Transport to the manufacturer and
- A3 Manufacturing

Construction stage:

- A4 Transport from the gate to the site
- A5 Packaging waste processing

End-of-life stage:

- C2 Transport to waste processing
- C4 Disposal (landfill)

This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues.

• D - Declaration of all benefits or recycling potential from EOL and A5.

3.3 Estimates and assumptions

EoL:

In the End-of-Life stage, for all the materials, which can be recycled, a recycling scenario with 100% collection rate was assumed.

3.4 Cut-off criteria

In the assessment, all available data from the production process are considered, i.e. all raw materials used, auxiliary materials (e.g. lubricants), thermal energy consumption and electric power consumption - including material and energy flows contributing less than 1% of mass or energy (if available). In case a specific flow contributing less than 1% in mass or energy is not available, worst case assumption proxies are selected to represent the respective environmental impacts.

Impacts relating to the production of machines and facilities required during production are out of the scope of this assessment.

3.5 Background data

For life cycle modelling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used /GaBi 6 2013/. The GaBi-database contains consistent and documented datasets which are documented in the online GaBi-documentation /GaBi 6 2013D/. To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

3.6 Data quality

The requirements for data quality and background data correspond to the specifications of the /IBU PCR PART A/.

PE INTERNATIONAL performed a variety of tests and checks during the entire project to ensure high quality of the completed project. This obviously includes an extensive review of project-specific LCA models as well as the background data used.

The technological background of the collected data reflects the physical reality of the declared products. The datasets are complete and conform to the system boundaries and the criteria for the exclusion of inputs and outputs.

All relevant background datasets are taken from the GaBi 6 software database. The last revision of the used background data has taken place not longer than 10 years ago.

3.7 Period under review

The period under review is 2013/14 (12 month average).

3.8 Allocation

Regarding incineration, the software model for the waste incineration plant (WIP) is adapted according to the material composition and heating value of the combusted material. In this EPD, the following specific life cycle inventories for the WIP are considered for:

- Waste incineration of plastic
- Waste incineration of paper

Regarding the recycling material of metals, the metal parts in the EoL are declared as end-of-waste status. Thus, these materials are considered in module D. Specific information on allocation within the background data is given in the GaBi dataset documentation.

3.9 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

4. LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared (MND).

Installation into the building (A5)

Name	Value	Unit
Output substances following waste treatment on site (Paper packaging)	4.58	kg

Reference service life

Name	Value	Unit
Reference service life	12	а

End of life (C2 and C4)

Name	Value	Unit
Collected separately Brass, Stainless Steel, Steel, Zinc	10.87	kg
Recycling Brass	0.012	kg
Recycling Stainless Steel	8.96	kg
Recycling Steel	0.32	kg
Recycling Zinc	1.44	kg
Reuse Plastic Parts	0.14	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
Collected separately waste type (including packaging)	15.45	kg
Recycling Brass	0.08	%
Recycling Stainless Steel	58.00	%
Recycling Steel	2.04	%
Recycling Zinc	9.32	%
Reuse Plastics	0.88	%
Reuse Paper packaging (from A5)	29.68	%

5. LCA: Results

Results shown below were calculated using CML 2000 – Apr. 2013 Methodology.

DESC		YSTEN	I BO	BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)									CLARED)						
CONSTRUCTION														BENEFITS AND					
PRODU	UCTS	STAGE	ESS	USE STAGE								END OF LIFE STAGE				BEYOND THE			
			STAC	GE													SYSTEM BOUNDARYS		
			er .							N	6	٦ ٦	-		g				
rial	۲	ing	m th site	~		ce		ent ¹⁾	ent ¹	ner		vate	ction	۲	ssin	_	5 th -		
atel ply	ods	ctur	froi	hdm	e	nan	air	eme	ĥ	ale	9 9	ial v	truc	lods	oce	osa	se- very clinç ntia		
v m	ans	Infa	to	sse	ŝ	inte	Rep	lace	rbis	tion	sn	us us	ous	้ลกร	brd	isp	Reu Sco Scyc		
Rav	Ē	Man	ansp jate	Ä		Mai	_	Rep	efu	erai	5	Dera	o-o de	Ē	aste		A S S C		
			Tra G					ш	~	Ö)	ŏ			Š				
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	E	B6	B7	C1	C2	C3	C4	D		
X	Х	Х	Х	Х	MNE	MND	MND	MNE) MNI	DM	IND	MND	MND	Х	MND	X	Х		
RESU		OF TH	E LCA -	ENVIR	ONN	NENT	AL IM	PAC	T: On	e pie	ece C	DneS	ystem	Panic	Bar 1	Гуре В			
Parame	ter		Paramete	er		Ur	nit	A	1 - A3		A4		A5	C	2	C4	D		
GWP	,	Glob	al warming	potential		[kg CC	2-Eq.]	9.3	37E+01	3.6	57E-01	6	.50E+00	3.67E	:-01	3.39E-0	-6.79E+01		
ODP		strat	ospheric ozc		[kg CFC	11-Eq.] 1.0	06E-08	1.7	76E-12	2 2	.97E-11	1.76E	-12	1.02E-1	2 -6.10E-09			
AP		Acidifica	tion potentia water	nd	[kg SO	₂ -Eq.]	7.2	22E-01	1.6	68E-03	3 1	.48E-03	1.68E	-03	8.63E-0	5 -5.21E-01			
EP		Eut	rophication p		[kg (PO ₄) ³⁻ - Eq.]	4.6	63E-02	3.8	34E-04	2	.58E-04	3.84E	-04	6.53E-0	6 -3.02E-02			
POCF	>	Formatic ozone	n potential of photochemic	eric S	[kg Ethe	en Eq.]	4.3	34E-02	-5.4	42E-04	4 1	.05E-04	-5.428	-04	4.19E-0	6 -3.14E-02			
ADPE	=	Abiotic de	epletion pote fossil resour	on-	[kg St	Eq.]	2.7	2.71E-02		1.38E-08 1.		.17E-07	1.38E	-08	2.24E-0	3 -2.14E-02			
ADPF	-	Abiotic depletion potential for fossil				[M	J]	1.2	20E+03	5.0)7E+00) 1	.82E+00	5.07E+00		1.43E-0	-7.99E+02		
RESU	LTS	OF TH	THE LCA - RESOURCE USE: One piece OneSystem P						Par	nic Bar	Туре І	3							
Parame	eter	Parameter Unit A1 - A3 A4 A5							C2 C4		D								
PERI	E	Renev	vable prima ca	ry energy Irrier	y as energy [MJ] 2.15E+02 -			-		-		-							
PERM	М	Renewa	able primary material	energy r	esour n	rces as [MJ]		J]	0.00E+0)0 -		-		-	-	-		
PER	т	Total u	se of renew reso	able prim	nary e	nergy	rgy [MJ]		2.15E+02		2 2.00E-01		1.70E-0	1 2.00)E-01	1.05E-0	2 -5.76E+01		
PENR	RE	Non-ren	ewable prin ca	nary ener	gy as	energy	[M	J]	1.32E+03		-	-		-		-	-		
PENR	M	Non-rene	ewable prim utili	ary energ zation	gy as i	material	[M	J]	0.00E+00		-		-	-		-	-		
PENR	RT	Total use	of non-ren resc	ewable p	rimary	/ energy [MJ]			1.32E+	2E+03 5.09E+0		+00	2.13E+0	0 5.09E+00		1.59E-0	1 -8.53E+02		
SM		ι	Jse of seco	ndary ma	terial		[kį] 1.59E+(+00	0 0.00E+00		0.00E+0	0 0.00E+00		0.00E+	00 0.00E+00		
RSF	-	Use	of renewab	le second	lary fu	lels	[M	J]	0.00E+	+00	0.00E	+00	0.00E+0	0 0.00E+00		0.00E+	00 2.26E-02		
NRSI	F	Use of	non-renewa	able seco	ondary	fuels	[M	J]	0.00E+	+00	0.00E	+00	0.00E+0	0.00)E+00	0.00E+	00 3.74E-01		
FW			Use of net	fresh wa	ater		[m	3]	4.57E-	·01	1.41E	-04	1.89E-02	2 1.41	IE-04	8.27E-0	4 -2.95E-01		
RESUI	LTS 3	OF TH	IE LCA –	OUTP	UT F	LOW	S ANI	D WA	ASTE	САТ	EGO	RIE	S: One	piece	OneS	System	Panic Bar		
Param	eter		Parame	eter		Un	it	A1 -	- A3	A	44		A5	C2		C4	D		
HWI	D	Haz	ardous was	te dispos	ed	[k	9]	4.76	E-02	1.16	6E-05	1.4	47E-04	7E-04 1.16E-05		1.11E-05	-5.77E-04		
							j] 1.37		1.37E+01		6.40E-04		53E-01	-01 6.40E-04		0.455.00	-8.93E+00		
NHW	/D	Non-ha	azardous w	aste disp	osed	[k]	1.37	E+01	6.40	6.66E-06		002 0.	0.102	04	3.15E-02			
NHW RWI	/D D	Non-ha	azardous wa	aste dispo te dispos	osed sed	[kı	9] 9]	1.37 4.78	E+01 E-02	6.40	6E-04	1.0	25E-04	6.66E-	06	6.34E-06	-2.19E-02		
NHW RWI CRU	J J	Non-ha Radi Co	azardous wa oactive was	aste dispo te dispos for re-use	osed sed	[ks [ks [ks	9] 9] 9]	1.37 4.78 0.00	E+01 E-02 E+00	6.40 6.66 0.00)E-04)E-06)E+00	1.2	25E-04 00E+00	6.66E- 0.00E+	06 -00	3.15E-02 6.34E-06 0.00E+00	-2.19E-02 0.00E+00		
NHW RWI CRU MFF	/D D J	Non-ha Radi Co	azardous wa oactive was omponents t laterials for	aste dispo te dispos for re-use recycling	osed sed	[kı [kı [kı [kı	9] 9] 9] 9]	1.37 4.78 0.00	E+01 E-02 E+00 E+00	6.40 6.66 0.00 0.00)E-04)E-06)E+00)E+00	1.2 0.0 4.5	25E-04 20E+00 59E+00	6.66E- 0.00E+ 0.00E+	06 -00 -00	3.15E-02 6.34E-06 0.00E+00 0.00E+00	-2.19E-02 0.00E+00 0.00E+00		
NHW RWI CRU MFF MEF	D/ D J ۶	Non-ha Radi Co M Mate	azardous wa oactive was omponents t laterials for rials for ene	aste dispos te dispos for re-use recycling rgy recov	osed sed e very	[kı [kı [kı [kı	9] 9] 9] 9] 9]	1.37 4.78 0.00 0.00	E+01 E-02 E+00 E+00 E+00	6.40 6.66 0.00 0.00	6E-06 6E+00 6E+00 6E+00 6E+00	1.2 0.0 4.5 0.0	25E-04 25E+00 59E+00 00E+00	6.66E- 0.00E+ 0.00E+ 0.00E+	-00 -00 -00	3.15E-02 6.34E-06 0.00E+00 0.00E+00 0.00E+00	-2.19E-02 0.00E+00 0.00E+00 0.00E+00		
NHW RWI CRU MFF MEF		Non-ha Radi Co Mateu Exp	azardous was oactive was omponents to laterials for rials for ene orted electr	aste dispos te dispos for re-use recycling rgy recov ical energ	osed sed e very	[kş [kş [kş [kş [kş [kş	a) a) a) a) a) a)	1.37 4.78 0.00 0.00 0.00	E+01 E-02 E+00 E+00 E+00 E+00	6.40 6.66 0.00 0.00 0.00)E+00)E+00)E+00)E+00)E+00)E+00	1.0 1.2 0.0 4.5 0.0 8.2	25E-04 25E-04 00E+00 59E+00 00E+00 22E+00	6.66E- 0.00E+ 0.00E+ 0.00E+ 0.00E+	-00 -00 -00 -00	3.15E-02 6.34E-06 0.00E+00 0.00E+00 0.00E+00 6.48E-01	-2.19E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00		

6. LCA: Interpretation

This chapter contains an interpretation of the Life Cycle Impact Assessment categories. Stated percentages in the whole interpretation are related to the overall life cycle, excluding credits (module D).

The production stage (modules A1-A3) contributes between 93% and 100% to the overall results for all the environmental impact assessment categories hereby considered. Within the production stage, the main contribution for all the impact categories is the production of stainless steel and steel, with almost 100%, mainly due to the energy consumption on this process. Stainless steel and steel account with 100% to the overall mass of the product, therefore, the impacts are in line with the mass composition of the product. The environmental impacts for the transport (A2) have a negligible impact within this stage. The negative values of CML - POCP for transports (module A4 and C2) due to the CML impact characterization factor for NOx emissions. The most important substance contributing to the

7. Requisite evidence

Not applicable in this EPD.

8. References

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin (pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of *Institut Bauen und Umwelt* e.V. (IBU), 2013-04. www.bau-umwelt.de

PCR Part A

Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. April 2013. www.bau-umwelt.de

PCR Part B

IBU PCR Part B: PCR Guidance-Texts for Building-Related Products and Services. From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU). Part B: Requirements on the EPD for Locks and fittings. www.bau-umwelt.com

ISO 14025

ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 14846:2008

Building hardware — Locks and latches — Electromechanically operated locks and striking plates — Requirements and test methods ozone forming process is nitrogen dioxide (NO2), which is cleaved under the influence of sunlight. This produces nitric oxide (NO) and ozone (O3). Conversely nitrogen monoxide and ozone form NO2 and O2. Ozone formation and ozone depletion are in equilibrium, the ozone concentration depend on the ratio of NO2 and NO emissions to air and the solar radiation.

Therefore NO has a negative and NO2 a positive characterization factor according to CML. NO is mainly emitted from internal combustion engines (ICE) while the fuel combustion. This leads to a negative overall value for the POCP for transports (using ICE) according to CML methodology.

In the end-of-life stage (module D, negative values), loads and benefits are assessed. The benefits are considered beyond the system boundaries and are declared for the recycling potential of the metals and for the credits from the incineration process (energy substitution).

ISO 9001: 2008-12

ISO 9001: 2008: Quality management systems -Requirements (ISO 9001:2008); Trilingual version EN ISO 9001:2008.

OHSAS 18001: 2007

OHSAS 18001: 2007: Occupational health and safety management systems. Requirements.

EN 15804

EN 15804: 2012+A1:2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

ISO 14001

Environmental management systems -Requirements with guidance for use (ISO 14001:2004 + Cor. 1:2009).

ANSI/BHMA A156.3-2008

Standard ANSI/BHMA A156.3-2008 establishes requirements for exit devices and trim, automatic and self-latching flush bolts, removable mullions, coordinators, and carry-open bars. Functions and types are described and numbered.

A117.1 Accessibility Code

Standard for Accessible and Usable Buildings and Facilities as mandated by law and incorporated by reference by the States and Municipalities, including Ohio in the Ohio Administrative Code 4401:8-44-01.

GaBi 6 2013

GaBi 6 2013: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Leinfelden-Echterdingen, 1992-2013.

GaBi 6 2013D

GaBi 6 2013D: Documentation of GaBi 6: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Leinfelden-Echterdingen, 1992-2013. http://documentation.gabi-software.com/

9. Annex

Results shown below were calculated using TRACI Methodology.

DESC	RIPT	ION O	F THE	SYST	EM B	OUND	ARY (X = IN	NCL	UDE	D IN	LCA;	MN	D = N	IOD	ULE N	OT DE	CL	ARED)
CONSTRUCT																			IEFITS AND
PROE	оост е	STAGE	ON PR	OCESS		USE STAGE								END OF LIFE STAGE				BE	YOND THE
			STA	AGE															SYSTEM
			d)								>	L_						БО	UNDAR 13
a		Ð	ite ite			ð		lt ¹⁾	(1	ŭ	erg	atei	ion	_		sing			
iteri Iy	oort	turi	ron ie s	yldr		anc	air	ner		me	l en	al w	uct	tion	Dort	ces	sal	ά	ery- ing- tial
ddn	ansp	ufac	to t	sen	Use	Iten	ceps	acei		JISIC	ona use	ion; use	nsti	noli	ansp	pro	spo	eus	cov cycl iten
kaw s	Tra	lanu	nsp ate 1	As		/air	œ	epla		ini	rati	erat	-00	der	Ë	ste	Ö	2	PC PC
Ľ.		≥	Trai g			2		R		۳Ľ	ope	ð	ď			Wa			
A1	A2	A3	A4	A5	B1	B2	B3	B4	E	35	B6	B7	С	1	C2	C3	C4		D
Х	Х	Х	Х	Х	MND	MND	MND	MND	M	ND	MND	MND	MN	١D	Х	MND	Х		Х
RESU	ILTS	OF TH	IE LCA	- EN	VIRON	MENT	AL IM	PAC	Г: О	ne p	oiece	OneS	yste	em Pa	anic	Bar T	ype B		
Param	eter		P	aramete	er			Unit		A1	- A3	A4		A5		C2	c	4	D
GW	Р		Global w	arming p	ootential		[kg	CO ₂ -Eo	q.]	9.37	E+01	3.67E-0	01 6	6.50E+	00 3	3.67E-01	3.39E	-01	-6.79E+01
OD	- C	Depletion potential of the stratospheric ozone					[kg C	FC11-E	Eq.]	1.13	E-08	1.87E-′	12 3	3.16E-′	11	1.87E-12	1.08E	-12	-6.49E-09
AP		Acidific	Acidification potential of land and water					SO ₂ -Eo	ą.]	6.96	E-01	2.20E-0	03 1	1.79E-(03	2.20E-03	1.01E	-04	-4.99E-01
EP			Eutroph	ication p	otential		[k	g N-eq.]		2.70	E-02	1.55E-0	04 ´	1.03E-0	04	1.55E-04	3.08E	-06	-1.41E-02
Smc	g	Grou	nd-level s	mog form	nation pote	ential	[kg	JO₃-eq.	.]	7.74	E+00	4.52E-0	02 4	4.19E-(02	4.52E-02	7.95E	-04	-5.44E+00
Resou	rces	R	esources	s – fossil	resource	s		[MJ]	8.33E+01 7.29E-0		01 2	2.14E-01		7.29E-01	1.47E	-02	-5.00E+01		
RESU	ILTS	OF TH	IE LCA	A - RE	SOUR	CE USI	USE: One piece OneSystem Panic Bar Type B												
Para	meter	r Parameter				Un	it	A1	- A3		A4	4	45		C2	C4		D	
PE	RE	Renewable primary energy as energy				[M.	/J] 2.15		E+02	2 -			-		-	-		-	
PE	RM	Rene	wable p	rimary e	nergy re	sources	[M,	J]	0.00E+00					-		-		-	
PE	RT	Total	use of re	enewable resource	e primar	y energy	[M,	J]	2.15	2.15E+02 2.00E-01		0E-01	1.70E-01		2.0	2.00E-01		02	-5.76E+01
PE	NRE	Nor	n-renewa	able prim	nary ene	rgy as	[M,	J]	1.32	.32E+03 -				-		-		-	
PEI	NRM	Nor	n-renewa	able prim	nary ene	rgy as	[M,	J]	0.00E+00			-		-		-	-		-
PE	NRT	Tota	al use of ene	non-ren	ewable p	orimary	[M,	J]	1.32E+03 5		5.09	09E+00 2		2.13E+00 5		5.09E+00		01	-8.53E+02
S	SM		Use of s	seconda	ry mater	ial	[kg] 1.59			E+00	0.00	DE+00	0.00E+00 0		0.0	0.00E+00		00	0.00E+00
R	SF	Use	e of rene	wable se	econdary	/ fuels	[M,	[MJ] 0.00		E+00	0.00	DE+00	0.00	E+00) 0.00E+00		0.00E+00		2.26E-02
NF	RSF	Use o	of non-re	newable	second	ary fuels	[M,	J]	0.00	E+00 0.00E+00		DE+00	0.00	E+00	0.0	0E+00	0.00E+00		3.74E-01
F	W		Use c	of net fre	sh water	•	[m	3]	4.57	'E-01	1.4	1E-04	1.89)E-02	1.4	1E-04	4 8.27E-04		-2.95E-01
RESU One r	JLTS Diece	OF TH	IE LCA	A – OU Panic	TPUT Bar T	FLOW	S AN	D WA	STI	ECA	TEG	ORIES	S:						
Parar	Parameter Parameter					Ur	nit	A1	- A3		A4		A5		C2	C4		D	
HV	VD	· ·	Hazardo	us waste	e dispos	ed	[k	g]	4.76	6E-02	1.1	6E-05	1.47	7E-04	1.1	6E-05	1.11E-	05	-5.77E-04
NH	WD	No	Non-hazardous waste disposed			[k	g]	1.37	7E+01	6.4	0E-04	1.63	3E-01	6.4	0E-04	3.15E-	02	-8.93E+00	
RV	VD	F	Radioact	ive wast	e dispos	ed	[k	g]	4.78	3E-02	6.6	6E-06	1.25	5E-04	6.6	6E-06	6.34E-	06	-2.19E-02
CF	RU		Compo	onents fo	or re-use	1	[k	g]	0.00)E+00	0.0	0E+00	0.00)E+00	0.0	0E+00	0.00E+	00	-
MF	R		Mater	ials for r	ecycling		[k	g]	0.00)E+00	0.0	0E+00	4.59	E+00	0.0	0E+00	0.00E+	00	-
ME	R	N	laterials	for ener	gy recov	ery	[k	g]	0.00)E+00	0.0	0E+00	0.00)E+00	0.0	0E+00	0.00E+	00	-
EE	E		Exporte	d electric	cal energ	ЗУ	[M	IJ]	0.00)E+00	0.0	0E+00	8.22	2E+00	0.0	0E+00	6.48E-	01	-
EE	T	Exported thermal energy						IJ]	0.00)E+00	0.0	0E+00	2.32	2E+01	0.0	0E+00	1.78E+	00	-

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@bau-umwelt.com www.bau-umwelt.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 - 3087748 - 29 info@bau-umwelt.com www.bau-umwelt.com
thinkstep	Author of the Life Cycle Assessment thinkstep AG Hauptstraße 111-113 70771 Leinfelden-Echterdingen Germany	Tel Fax Mail Web	+49 (0)711 341817-0 +49 (0)711 341817-25 info@thinkstep.com www.thinkstep.com
ASSA ABLOY	Owner of the Declaration ASSA ABLOY Sicherheitstechnik GmbH Bildstockstraße 20 72458 Albstadt Germany	Tel Web	+49 7431 123-0 www.assaabloy.de